Sodium-calcium exchanger and multiple sodium channel isoforms in intra-epidermal nerve terminals

نویسندگان

  • Anna-Karin Persson
  • Joel A Black
  • Andreas Gasser
  • Xiaoyang Cheng
  • Tanya Z Fischer
  • Stephen G Waxman
چکیده

BACKGROUND Nociception requires transduction and impulse electrogenesis in nerve fibers which innervate the body surface, including the skin. However, the molecular substrates for transduction and action potential initiation in nociceptors are incompletely understood. In this study, we examined the expression and distribution of Na+/Ca2+ exchanger (NCX) and voltage-gated sodium channel isoforms in intra-epidermal free nerve terminals. RESULTS Small diameter DRG neurons exhibited robust NCX2, but not NCX1 or NCX3 immunolabeling, and virtually all PGP 9.5-positive intra-epidermal free nerve terminals displayed NCX2 immunoreactivity. Sodium channel NaV1.1 was not detectable in free nerve endings. In contrast, the majority of nerve terminals displayed detectable levels of expression of NaV1.6, NaV1.7, NaV1.8 and NaV1.9. Sodium channel immunoreactivity in the free nerve endings extended from the dermal boundary to the terminal tip. A similar pattern of NCX and sodium channel immunolabeling was observed in DRG neurons in vitro. CONCLUSIONS NCX2, as well as NaV1.6, NaV1.7, NaV1.8 and NaV1.9, are present in most intra-epidermal free nerve endings. The presence of NCX2, together with multiple sodium channel isoforms, in free nerve endings may have important functional implications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic localization of sodium/calcium exchangers in neuromuscular preparations.

Calcium ions play a critical role in neurotransmitter release. The cytosolic Ca2+ concentration ([Ca2+]cyt) at nerve terminals must therefore be carefully controlled. Several different mechanisms, including a plasmalemmal Na/Ca exchanger, are involved in regulating [Ca2+]cyt. We employed immunofluorescence microscopy with polyclonal antiserum raised against dog cardiac sarcolemmal Na/Ca exchang...

متن کامل

Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels.

Diffuse axonal injury (DAI) is one of the most common and important pathologies resulting from the mechanical deformation of the brain during trauma. It has been hypothesized that calcium influx into axons plays a major role in the pathophysiology of DAI. However, there is little direct evidence to support this hypothesis, and mechanisms of potential calcium entry have not been explored. In the...

متن کامل

Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE.

Axonal degeneration contributes to the development of non-remitting neurological deficits and disability in multiple sclerosis, but the molecular mechanisms that underlie axonal loss in multiple sclerosis are not clearly understood. Studies of white matter axonal injury have demonstrated that voltage-gated sodium channels can provide a route for sodium influx into axons that triggers reverse op...

متن کامل

Presynaptic Terminals

Fluorescent indicators were used to detect stimulus-evoked changes in presynaptic levels of intracellular sodium (Na1) and calcium (Ca1) in granule cell parallel fibers in brain slices from rat cerebellum. Ca, increased during stimulation, and three exponentials were needed to approximate its return to prestimulus levels. Ca, decayed to -10% of peak levels with T 100 ms, to -1% of peak values w...

متن کامل

Transport and localization of the DEG/ENaC ion channel BNaC1alpha to peripheral mechanosensory terminals of dorsal root ganglia neurons.

Mammalian brain sodium channel (BNaC, also known as BNC/ASIC) proteins form acid-sensitive and amiloride-blockable sodium channels that are related to putative mechanosensory channels. Certain BNaC isoforms are expressed exclusively in dorsal root ganglia (DRG) and have been proposed to form the ion channels mediating tissue acidosis-induced pain. With antibody labeling, we find that the BNaC1a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010